

John Luke Wolff

Jet Propulsion Laboratory, California Institute of Technology

© 2018 California Institute of Technology. Government sponsorship acknowledged.

KaRIn Instrument Overview

KaRIn Alignment Mechanism Overview

KaRIn Alignment Mechanism Configuration

KaRIn Alignment Mechanism Kinematics

Commanded Motion Kinematics

Diagonal Strut

- 1-DOF Precision Mechanism:
- \triangleright 0.5 µm (0.13mdeg) step size

Commanded Motion Performance

Measured four mechanism cycles both directions

- Average 0.133mdeg per step Absolute position within ±0.3mdeg

Thermoelastic Distortion Kinematics

Diagonal Strut

Strut Width

Passive Strut

- ➤ Thermoelastic distortion 0 ± 2mdeg
- ➤ Temperature Range: {+100C, -95C}

Thermoelastic Distortion Performance

Mechanism Strut Assembly

Linear Actuator Assembly Configuration (in Mechanism Strut Assembly)

Linear Actuator Assembly Kinematics: ACME Leadscrew/Nut

Translating Components

Components

Anti-Torque Feature: Bellows Assembly

Bellows Assembly

Limit Bending Loads through Actuator: Plain, Telescoping Bearing Housings

Actuator Assembly

Inner Bearing Housing

Outer Bearing Housing

Minimize Backlash: Preload Mechanism for Operations

Compression Spring

Spring Guide

Limit Mechanism Travel: Non-Jamming Mechanical Hard-Stops

Linear Actuator Assembly Performance Test Setup

Laser interferometry per ASTM E289 (Vacuum Chamber)

Mechanism Configured for Vibration Testing

Mass Simulator:

Represent mass supported by mechanism during launch

4x Single Axis Accelerometers: Local bending mode of diagonal strut

Vibration Test Results Compared to Non-Linear Contact and Gapping Finite Element Modeling

Mechanism Configured for Performance Testing in Thermal Vacuum Chamber

What is 0.5 microns? How hard could it be?

TVAC Optical Lever Measurement Setup

TVAC Optical Lever Measurement Setup

Optical Lever Measurement Setup Pictures

Actuated Tip-Tilt Mirror Mount (Calibration Stage)

Calibrating the Beam Path Length for Optical Lever Setup (Non-Linear vs Linear Detectors)

Key Lessons Learned

- 1. Angular motion requirements, based on <u>sub-micrometer</u> <u>length</u> <u>changes</u>, can be <u>challenging to verify</u>.
- 2. When working with <u>small companies</u>, understand the <u>capabilities of the specific personnel</u> working your task and <u>recent history performing similar tasks</u>.
- 3. <u>Interfaces can drive</u> not only design complexity but also <u>test support</u> and <u>requirement verification complexity</u>.
- 4. <u>High performance hardware</u> requires an even <u>higher</u> <u>performance test apparatus</u> to verify performance.

John Luke Wolff

Jet Propulsion Laboratory, California Institute of Technology

© 2018 California Institute of Technology. Government sponsorship acknowledged.